Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures
نویسنده
چکیده
In cryptanalysis, solving the discrete logarithm problem (DLP) is key to assessing the security of many public-key cryptosystems. The index-calculus methods, that attack the DLP in multiplicative subgroups of finite fields, require solving large sparse systems of linear equations modulo large primes. This article deals with how we can run this computation on GPUand multi-core-based clusters, featuring InfiniBand networking. More specifically, we present the sparse linear algebra algorithms that are proposed in the literature, in particular the block Wiedemann algorithm. We discuss the parallelization of the central matrix– vector product operation from both algorithmic and practical points of view, and illustrate how our approach has contributed to the recent record-sized DLP computation in GF(2).
منابع مشابه
Numerical Linear Algebra on Emerging Architectures: the PLASMA and MAGMA Projects
The emergence and continuing use of multi-core architectures and graphics processing units require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA ) are two project...
متن کاملSolution of eigenvalue problems on heterogeneous computing architectures
In this paper are presented current achievements and the state-of-the-art algorithms and implementations for dense linear algebra on traditional architectures such as single-core machines or distributed memory parallel machines. Also, this paper summarizes the current implementations and publicly available libraries for basic linear algebra for multi-core and many-core architectures (e.g. graph...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملEfficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کامل